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Abstract Purpose:

The manual generation of training data for the se-
mantic segmentation of medical images using deep neural-
networks is a time-consuming and error-prone task. In
this paper, we investigate the effect of different levels
of realism on the training of deep neural-networks for
semantic segmentation of robotic instruments. An in-
teractive virtual-reality environment was developed to
generate synthetic images for robot-aided endoscopic
surgery. In contrast with earlier works, we use physically-
based rendering for increased realism.

Methods:
Using a virtual reality simulator that replicates our

robotic setup, three synthetic image databases with an
increasing level of realism were generated: flat, basic,
and realistic (using the physically-based rendering). Each
of those databases was used to train 20 instances of a
UNet-based semantic-segmentation deep-learning model.
The networks trained with only synthetic images were
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evaluated on the segmentation of 160 endoscopic im-
ages of a phantom. The networks were compared using
the Dwass-Steel-Critchlow-Fligner non-parametric test.

Results:
Our results show that the levels of realism increased

the mean intersection-over-union (mIoU) of the net-
works on endoscopic images of a phantom (p<0.01).
The median mIoU values were 0.235 for the flat dataset,
0.458 for the basic, and 0.729 for the realistic. All the
networks trained with synthetic images outperformed
naive classifiers. Moreover, in an ablation study, we
show that the mIoU of physically-based rendering is su-
perior to texture mapping (p<0.01) of the instrument
(0.606), the background (0.685), and the background
and instruments combined (0.672).

Conclusion:
Using physical-based rendering to generate synthetic

images is an effective approach to improve the train-
ing of neural networks for the semantic segmentation
of surgical instruments in endoscopic images. Our re-
sults show that this strategy can be an essential step in
the broad applicability of deep neural-networks in se-
mantic segmentation tasks and help bridge the domain
gap in machine learning.

Keywords Deep learning · Semantic segmentation ·
Photorealistic rendering

1 Introduction

Hundreds of procedures on actual patients are required
before a doctor can graduate from surgical residency
[11]. For example, before a surgeon can take the ex-
amination to be certified by the “American Board of
Surgery,” the surgeon needs to have at least 850 oper-
ative procedures in their five years of residence. Even
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though some of the initial procedures are supervised,
surgical skill positively affects surgical outcomes [19].
At the same time that training with actual patients is
required, we must minimize the exposure of patients to
the risks of inexperience [19,22].

In this context, we have been developing a versatile
robotic system, called SmartArm [13], which can assist
in many surgical scenarios. In addition, our group and
collaborators have been working on the development
of artificial phantoms with high anatomical-fidelity, for
instance, the Bionic-Brain [14]. The Bionic-Brain is a
head phantom used to train for neurosurgery. Most
recently, the SmartArm system has been successfully
validated in endoscopic dura-mater suturing using the
Bionic-Brain, through an endonasal approach [13].

Endonasal suturing of the dura mater is a complex
task because of the narrow workspace, being challeng-
ing even for expert neurosurgeons. Our initial results
[13] indicate that using the SmartArm robot through
the endonasal approach is feasible and can reduce task
time and increase accuracy when compared to doing
it manually. To further increase the accuracy of our
robotic system and to streamline the training of users,
the precise positional information of the robotic in-
struments is required. In an earlier work [12], we have
shown that the instruments’ position obtained from the
robot’s encoders, even after careful offline calibration,
can still be inaccurate by a few millimeters. By using
the endoscopic image, which is readily available dur-
ing surgery, we aim to perform an online calibration of
the robotic systems, increasing its safety and accuracy.
The first step towards this direction is to be able to ac-
curately segment the robotic instruments in the endo-
scopic images. Before the SmartArm can go through a
certification process to perform clinical trials and even-
tually be introduced in the operating theater to operate
inside a human patient, it is essential to study first the
robotic instrument calibration using phantoms inside a
controlled setup. The segmentation of clinical images is
out of the scope of this work.

In recent years, the quality of the semantic seg-
mentation of medical instruments in endoscopic im-
ages has been dramatically improved by the use of con-
volutional neural-networks [1] (CNNs). CNNs [21] are
neural-networks in which at least one of the layers per-
forms a convolution operation. Like other types of neu-
ral networks, CNNs are composed of several layers, each
of which has trainable parameters and can perform dif-
ferent mathematical operations. Similarly to other types
of machine learning, CNNs are trained by feeding pairs
of input and expected outputs and calculating an error
signal commonly called loss. Then, the derivative of the
trainable parameters of the network with respect to the

loss can be calculated through back-propagation using
stochastic-gradient descent (or similar methods). By it-
erating through the training dataset, the network pa-
rameters are slowly moved towards a “good enough” lo-
cal minimum of the loss. A network with a large number
of trainable parameters can learn complex non-linear
functions [10].

A large amount of data is required to train the
large scale networks required to solve complex tasks.
In the case of the semantic segmentation of endoscopic
images, the training data are often composed of en-
doscopic images paired with their manually segmented
versions. In this context, the manual generation of large
amounts of data becomes a time-consuming and error-
prone task. Moreover, a change in the design of the in-
strument might invalidate all prior manually annotated
data. Synthetically generated data is then a reasonable
alternative [23,25,8], because after a suitable virtual
environment is developed, a change in the instrument’s
structure can be readily taken into account by changing
the computer model of the instrument.

In [8], the authors evaluated the detection of objects
using Faster R-CNN [18], trained using purely synthetic
data of randomly placed objects. Although no photore-
alistic rendering was employed, the model trained with
synthetic data outperformed object detectors trained
purely on real data. Other works, such as [7], focused in
the detection of objects with reflectance materials, us-
ing ray casting to generate photorealistic images. They
found that using a combination of photorealistic im-
ages and domain optimization has the potential to train
robust object detectors on synthetic data that can be
successfully applied to real-world images.

Closer to the application sought in this work, a sur-
gical simulation was employed in [25] to create a dataset
to train deep learning models for surgical instrument
detection in cataract operations. The surgical simula-
tor they made can be considered an animation instead
of an interactive environment. In our work, we focus on
the real-time interactive simulation and photorealistic
rendering to generate a synthetic database. Addition-
ally, we analyze the effect of the rendering quality in
the training of the deep learning models.

1.1 Statement of contributions

With the prior discussion in mind, we aim to improve on
the state-of-the-art in two ways. (1) Develop a VR envi-
ronment used to study the effects of increasing levels of
realism in synthetic images on the generalization of the
trained CNNs to real endoscopic images of a phantom.
We hypothesize that higher levels of realism will have
increased validation performance. Our methodology for
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generating photorealistic images is discussed in detail.
Moreover, (2) the data is made available to the scien-
tific community1 in hopes that it can become a useful
benchmark in the validation of networks trained with
only simulated data. The proposed training methodol-
ogy uses the U-Net architecture [20] than can be exe-
cuted in a relatively affordable 8GB graphics GPU2.

To the best of the authors’ knowledge, this is the
first work to address the different levels of realism on
the training of CNNs with only synthetic images.

2 Materials and methods

Our real setup for endonasal robotic surgery [13] is
briefly described in Section 2.1. The proposed method-
ology is based on the development of a VR-based simu-
lator described in Section 2.2, based on our real robotic
setup. The simulator can render images with three lev-
els of realism. The synthetic images are used to train
the deep-learning model described in Section 2.3. The
workflow of this study is depicted in the Figure 1. Our
aim is to evaluate what are the effects of the different
levels of realism on the semantic segmentation accuracy
of the deep learning model on real images of the head
phantom.

2.1 Real images database

Our robot-assisted setup for endonasal suturing consists
of two robotic arms (DENSO VS050, DENSOWAVE,
Japan) to which we attach dexterous flexible robotic
instruments [2]. In our prior work introducing the Smar-
tArm system [13], we validated our endonasal setup on
an anatomically-correct phantom (Bionic-Brain, Medridge,
Japan) [14].

In this work, we manually segmented 160 frames
obtained from five videos recorded during our valida-
tion trials [13]. Samples of the manual segmentation are
shown in Fig. 2. The ground-truth images were to be
used only for validation of the machine learning model
and not for training. This way, we can be sure that our
validation data is not contaminated by examples used
during training.

1 Refer to https://github.com/mmmarinho/
levels-of-realism-ijcars2020 for more information.

2 The initial version of the code is submitted along the
manuscript. For a more up-to-date version, refer tohttps:
//github.com/mmmarinho/levels-of-realism-ijcars2020.

2.2 Synthetic images database

For the production of the synthetic training database
images, we developed an interactive VR simulator that
replicates the physical simulation of the dura mater su-
turing by the SmartArm surgical robotic system, as
shown in Fig. 3. The position of the simulated tools,
the point of view of the virtual camera, and the light-
ing conditions were set consistently with the physical
head phantom, allowing the generation of rendered im-
ages that resemble the real operating conditions. The
dynamics simulation of tools and the soft bodies were
modeled using rigid elements connected by soft joints
[4], leading to a rigid multibody system that is simu-
lated in real-time using rigid body dynamics and solved
by the PhysX engine (NVIDIA, USA).

Our simulation system is capable of interactively
simulating the needle driving and knot tying on a sim-
ulated dura mater membrane. Both the VR simulator
and the SmartArm surgical robotic system are con-
trolled using the same haptic interfaces providing force
feedback. The objects’ pose data from the VR simula-
tor is recorded at 30 Hz, so that the whole scene can
be reconstructed offline by a different software created
using the Unity 3D (Unity Technologies, USA) game
engine, to synthesize the frame images while applying
different shading techniques. Under this approach, the
ground truth segmentation is obtained with little effort
by rendering the instruments using a solid white color
and using a uniform black color for the background and
the other objects.

In 3D computer graphics, rendering is the process
of producing a graphical output from the objects de-
scribed inside a virtual scene, typically modeled as a
set of triangle meshes. Unlike raytracing, in real-time
rendering, the triangles are projected to the virtual
camera’s image plane and discretized into pixels dur-
ing a process called rasterization. Shading is the process
through which the final color of each pixel is determined
based on variables such as the camera point of view,
surface curvature, the incidence of the light, and the
material’s color properties of the virtual objects that
originated such pixels. This process involves complex
computations coded into a program called shader that
runs in parallel on the GPU. By extension, the term
‘shader’ is also used to refer to the implemented tech-
nique. In this work, the term ‘renderer’ will also be used
for the same effect. It is possible to achieve different vi-
sual effects using a shader, ranging from artistic styles
such as toon shading to realistic-looking images using
lighting models to determine the resulting color consid-
ering the interaction of the simulated light sources with
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Fig. 1 An overview of the proposed methodology in this study. First, the synthetic training database is generated using data
from VR simulation. CNN is then trained using synthetic images. Finally, the trained CNN is tested on real images.

Fig. 2 Samples of manually segmented images. Note that
the topology of the annotations is complex and might have
holes through which the background is visible. Moreover, dif-
ferent trials had different camera placements and light con-
ditions, which affect the visibility of the instruments and the
appearance of the background.

Fig. 3 a) Simulated scenario with two robot arms equipped
with thin tools operating inside the nasal cavity. b) A screen-
shot of the VR simulation and c) a video frame from the
physical simulation.

the optical properties of the virtual surfaces mathemat-
ically.

Physically-based rendering (PBR) comprises tech-
niques aiming to obtain photorealistic images by ac-
curately modeling the physical nature of light and its
interaction with the material’s surfaces in the real world
[17]. Real-time PBR uses microfacets theory [24] to sta-
tistically model rough surfaces, and the principle of en-
ergy conservation (a surface never reflects more light

than it receives) to achieve realistic diffuse and specu-
lar reflection. In PBR, the optical properties of materi-
als are modeled using two intuitive parameters, namely
roughness and metalness [16]. The roughness parame-
ter controls how smooth or rough is a surface: while a
smooth surface reflects light in a specular way, rough
surfaces diffusely scatter the light. The metalness pa-
rameter (also known as metallic or metallicity) con-
trols the metal-like appearance of material by modu-
lating the reflectivity of the surface. By adjusting these
two parameters, the appearance of different materials
can be approximated. A particular material is then de-
scribed by its base color (albedo), roughness, and metal-
ness properties encoded as a bi-dimensional map or tex-
ture. High-frequency surface details such as scratches
on the metallic instruments and the porous surface of
the synthetic bones can be approximated using normal
mapping [9].

To analyze the effect of realism of the synthetic
database in the training of the network, we defined
three levels of realism. The first level corresponds to
a ‘flat’ shading without any gradient using a solid color
matching the average color at each object. The second
level, called ‘basic’ shading, was obtained using only
diffuse lighting [3], producing intensity gradients ac-
cording to the light incidence and the surface normal.
The third level of realism uses the PBR implementa-
tion by Unity engine to achieve photorealistic render-
ing (Fig. 4), especially of the robotic instruments with
plausible specular highlights and metal-like surface re-
flections. We formed a database consisting of 10,376
color images of 256x256 pixels for each shading condi-
tion with their respective ground truth segmentation.
Both color images and the respective segmentation were
converted to 8-bit grayscale images before its use as in-
put for the machine-learning model.
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Fig. 4 Different rendering qualities applied to the same sim-
ulation frame: a) flat shader (solid color), b) basic shader
(Phong), c) realistic shader (physically-based rendering), d)
the corresponding ground truth segmentation.

2.3 CNN architecture and loss function

For the semantic segmentation of the robotic instru-
ments, we used an architecture based on the U-Net
[20], implemented in Tensorflow 2.03 in Python. The
U-Net has a symmetric encoder-decoder structure. The
encoder reduces the size of the image after each consec-
utive convolution while increasing the number of learn-
able filters, in a total of five stages. The decoder in-
creases the size of the image while reducing the number
of learnable filters. This strategy has been shown to be
quite effective in the semantic segmentation of biomed-
ical images [20] and is the base of many architectures
being used in the semantic segmentation of medical in-
struments [1].

The input of our network was a single-channel greyscale
image, I (x, y) ∈ [0, 1] ⊂ R, with height h = 256 and
width w = 256 pixels, i.e. x, y ∈ [1, 256] ⊂ N. The size is
a configurable variable that does not increase the num-
ber of filters required by the network but increases the
memory requirement and runtime.

The output of the network was a single-channel grayscale
image with the same size as the input, O (x, y) ∈ [0, 1]
⊂ R. The intensity of each pixel corresponded to the
level of confidence of the network in that pixel being
part of a robotic instrument. For example, O (x, y) = 0
means the network is confident that the pixel was part
of the background, and O (x, y) = 1 that the pixel was
part of a robotic instrument. We used a threshold of 0.5
to decide whether the pixel was from the instrument or
from the background.

The loss function was the binary crossentropy

L (I,O) =
1

w.h

h∑
j=1

w∑
i=1

(I (i, j) log (O (i, j)) + (1− I (i, j)) log (1−O (i, j)))

which is a standard loss function for binary classifica-
tion problems.

Following the recommendations in the initial U-Net
publication [20], the network was trained using stochas-
tic gradient descent.

3 https://www.tensorflow.org/

2.4 Data augmentation

Three types of data augmentation were used. The first
was an affine transformation, i.e. a rotation of the image
about its center in the interval between −45 and 45
degrees, followed by a translation between ±20 pixels in
the horizontal and vertical directions. The second was a
brightness augmentation between adding ±50% to the
intensity of the whole image. The last was a random
uniform additive noise in the interval [−0.1, 0.1] ⊂ R for
each pixel. No other augmentation strategy was used.

3 Experiments

With the photorealistic rendering strategies described
in Section 2, three datasets were generated, namely flat,
basic, and realistic. Each dataset was composed of 10376
images of the same simulated endonasal suturing inside
the head phantom. The only difference between them
was the rendering strategy. Given that we wanted to
evaluate the effects of the rendering strategies on the
generalization of the network to real images, no real
images were used for training. The learning rate was
0.02. Each network was trained for 40000 iterations,
and the learning rate was reduced by a factor of two
after every 15000 iterations. For the network to fit into
an 8GB graphics GPU, we used a batch size of eight.
With these settings, each network took about four hours
of training on an NVIDIA 2070 RTX GPU.

To study the performance of each network trained
only with simulated images in the semantic segmenta-
tion of real images, after every 1000 iterations, each
network was evaluated in the semantic segmentation of
the manually-annotated dataset composed of 160 im-
ages sampled from five trials of robot-assisted endonasal
suturing [13]. Using this methodology, we trained 20
networks for each dataset to provide a reasonable num-
ber of samples for statistical inference.

The metrics for the validation were the loss (binary
cross-entropy) and the mean intersection-over-union (mIoU).
We compared the median mIoU of all groups using
the Kruskal-Wallis test. Post-hoc pairwise comparisons
were made using the Dwass-Steel-Critchlow-Fligner [6]
(DS) all-pairs comparison test. The DS test is a non-
parametric test that evaluates the statistical signifi-
cance in the differences of the medians of two distribu-
tions. It has been shown to be more suitable for compar-
isons of unknown distributions with unequal variances
[5]. We used the two-tailed confidence level of 95%.

We hypothesized that increased levels of realism in
the simulated images used for training would increase
the performance of the network in the semantic segmen-
tation of real images. We also expected the networks to

This is a post-peer-review, pre-copyedit version of an article published in International Journal of Computer Assisted Radiology and Surgery. 
The final authenticated version is available online at: http://dx.doi.org/10.1007/s11548-020-02185-0



6 Heredia-Perez et al.

overfit to their training dataset composed of only sim-
ulated images.

3.1 Ablation study

In addition to the main experiments, we conducted an
ablation study to compare the PBR-based ’realistic’
shader with texture mapping. For this ablation study,
we generated three extra synthetic databases. The first
database was generated by mapping a snapshot of the
head phantom as the background texture of the VR
simulation. We regard this experimental condition as
‘photo BG’. For the second database, the background
was rendered using PBR and the instruments were ren-
dered by mapping a real photo of the instruments as
the instrument’s textures. We call this case as ‘photo
I’. For the last database, we used the photos to ren-
der both the background and the instruments. These
conditions are exemplified in Fig. 5.

Fig. 5 Additional rendering styles for ablation studies of the
proposed methodology. From left to right: using a photo as
background, applying texturing mapping to instruments us-
ing photos, and both background and instruments are ren-
dered using texture mapping using real photos.

4 Results

The best mIoU in the semantic segmentation of real
images for each network was logged during training.
The median of those values for each dataset is shown
in Fig. 7. The loss and mIoU during training are shown
in Fig. 8. The results of the ablation study are shown
in Fig. 9.

5 Discussion

The networks trained with the flat renderer had the
lowest mIoU (p < 0.01). After about 2000 iterations,
the validation mIoU stagnated near 0.28, as shown in
Fig. 8. As shown in Fig 8, the loss on the validation
dataset diverged while the loss on the training dataset
converged. This divergence indicates that the networks

Fig. 6 Results of the semantic segmentation of one real en-
doscopic image by a network trained in each of the three
rendering conditions. The network trained by the flat ren-
derer seems to be mostly working as an intensity threshold
and had many false positives. The network trained with the
basic renderer successfully segmented the shape of the tool
but failed to segment the reflecting parts of the shafts of the
instruments. The network trained with the realistic renderer
was able to segment the input image with high accuracy, even
in the presence of partial occlusion, although some misclassi-
fications are still visible.

Fig. 7 Medians and 95% confidence intervals of the best
mean IoU achieved by training on each dataset synthetic
image dataset. “Black” was a naive classifier that classi-
fied all pixels of the image as background. “White” was a
naive classifier that classified all pixels of the image as the
instrument. Pair-wise comparisons using the Dwass-Steel-
Critchlow-Fligner test for medians showed that all pair-wise
differences were statistically significant (p < 0.01).

trained with the flat renderer overfit to the training
data and were unable to generalize well to real images.
The flat renderer was still 183% better than a naive
renderer that classifies all pixels as being part of an
instrument, which means that some information from
the simulated images was still useful.

The networks trained with the basic renderer showed
a 94% better mIoU than those trained with the flat ren-
derer (p < 0.01). The mIoU over real images stabilized
near 0.40. The validation loss had a convergent pattern
in the first 5000 steps but was followed by a divergent
pattern in the following steps. This indicates that the
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Training
Validation

Flat Basic Realistic

m
Io
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Fig. 8 Loss and mIoU during training. The solid black line
corresponds to the median on the training data (simulation),
and the solid blue line corresponds to the test data (real im-
ages). The regions around the lines are the 95% confidence
intervals for the medians.

Fig. 9 Comparing with the ‘realistic’ dataset, the mIoU was
about 6% worse (p < 0.01) for ‘Photo BG’, about 8% worse
(p < 0.01) for ‘Photo BG_I’, and about 17% worse (p < 0.01)
for ‘Photo I’.

network was overfitting to the training data. Despite
this overfitting, the network still showed decent perfor-
mance in the validation of real images.

The networks trained with the realistic renderer had
a 210% increase in mIoU over the networks trained
with the flat renderer (p < 0.01) and a 59% increase in
mIoU over the networks trained with the basic renderer
(p < 0.01). In addition, the loss function showed conver-
gence throughout the entire training. This convergence
indicates that the network might not be overfitting to
the training images and that there is a learnable similar-
ity between the real images and the artificial images. In
addition, because the training dataset contained sam-
ples with partial occlusion of the instruments, the net-

works performed well on real data containing partial
occlusion of the instruments.

Given that the range of movement of the camera
inside the head phantom is limited, we opted to fix the
camera point throughout the synthetic dataset. Nonethe-
less, we analyzed the effect of the camera motion in
the realistic dataset by applying random translations
and rotation of the virtual camera within a certain
range. However, this did not improve the mIoU (0.715,
p < 0.01). This might be due to some of the unnatural
camera viewpoints added by automatically moving the
camera.

With these results, the main hypothesis of the pa-
per has been successfully tested. More realistic render-
ing has considerably better performance than simplified
rendering. The low level of the realism of the rendering
might be one of the factors that affected the classifying
power of earlier works [25].

The head phantom accurately resembles human anatomy,
but it does not replicate the color or photometric prop-
erties of living tissues. With that in mind, we do not
expect the CNN trained with synthetic data of the head
phantom to work well on clinical background condi-
tions. However, we do expect the presented framework,
possibly in conjunction with other techniques such as
image translation for domain transfer [15], to be ap-
plicable to clinical images when clinical data becomes
available.

In the ablation study, we applied texture mapping
using real photos of the head phantom and the instru-
ments as an alternative method to generate realistic
synthetic frames. Texture mapping allowed the gener-
ation of somewhat convincing images, but it failed to
accurately reproduce the variability present in the real
images. We believe this was mostly due to the lack of
ambient occlusion and the contact shadows, as well as
the improper metallic appearance of the instruments
which did not include reflections and highlights. In all
the ablation experiments, the texture-mapping perfor-
mance was worse compared to the realistic shader using
PBR: about 6% worse (p < 0.01) for ‘Photo BG’, about
8% worse (p < 0.01) for ‘Photo BG_I’, and about 17%
worse (p < 0.01) for ‘Photo I’. These results suggest
that the variability obtained using PBR might enhance
the performance of CNNs trained with synthetic images
and help bridge the domain gap in machine-learning re-
search.

6 Conclusions

In this work, we developed a virtual-reality environ-
ment that replicates our robot-aided endonasal suturing
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setup [13], inside a head phantom [14]. Using the simu-
lator, we created three synthetic image databases with
increasing levels of realism. We used the three databases
to train deep neural-network models and evaluated the
performance of the models–trained only on synthetic
images–on the classification of real images. We found
that increased levels of realism increased the semantic
segmentation of real images.

Ethical approval: This article does not contain
any studies with human participants or animals.
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