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Abstract— This work addresses the task-space design prob-
lem of a linear-quadratic optimal tracking controller for robotic
manipulators using the unit dual quaternion formalism. The
efficiency, compactness, and lack of singularity of the represen-
tation render the unit dual quaternion a suitable framework
for simultaneously describing the attitude and the position of
the end-effector. Motivated by the advantages of this kinematic
description, we propose a new task-space optimal tracking
controller in order to find an optimal trajectory for the
end-effector, providing a tool to balance more conveniently
the end-effector error and its task-space velocity. We show
that the kinematic control problem using the dual quaternion
transformation invariant error can be reduced to an affine
time-varying system. The proposed optimal tracking controller
allows the compensation of trajectory induced disturbances, as
well as other modeled additive disturbances and known bias.
Simulation results with different design parameters provide a
performance overview—in comparison with standard kinematic
controllers with and without a feed-forward term for tracking
a desired reference.

I. INTRODUCTION

The study of modeling and control strategies for robotic
manipulators is closely related to the specificities of the
desired task. Several tasks can be accomplished by stiff
robotic manipulators at relatively low velocities and accelera-
tions, justifying the use of kinematic control strategies. Sim-
plifications that arise from the kinematic description allow
designing controllers that do not require inertial parameter
specifications of the manipulator. Applications of kinematic
controllers branch from the stable proportional gain feedback
to several sub-fields of study as, for instance, robustness
to singularities and perturbations, workspace optimization,
simultaneous execution of multiple tasks, and several forms
of optimization [1], [2]. In the present study, we take interest
at optimization-based kinematic controllers at task-space.

In practical scenarios, there exists a discrepancy between
the task-space, where robot tasks are specified, and joint-
space, where the actuation takes place. One of the main
drawbacks of joint-space control techniques lies in this dis-
crepancy [3], as they require an external inverse kinematics
(IK) solution. Given a task specification at the end-effector,
the IK provides a set of joint configurations that match that
specification. Such solution is generally not easily derived,
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and in some cases the IK may even result in impossible
or in an infinite number of solutions [1]. Moreover, as
modern manipulator robots are often equipped with low
level controllers at joint level, task-space techniques have
the advantage of defining the control law directly at the
end-effector, making direct use of the available low level
controllers instead of redesigning them.

Closely intertwined with those fields, efficient representa-
tions for rigid body transformations have been a recurring
topic in several studies concerning robotics. Considering
coupled and singularity-free representations, the use of dual
quaternions over homogenous transformations is less com-
putationally demanding, being an efficient and compact form
for representing rigid transformations [4]. In addition, control
laws are defined directly over a vector field, eliminating the
need to extract additional parameters or to design matrix-
based controllers (i.e., controllers based on the matrix struc-
ture of SE(3)). In the light of those advantages, there has
been an increasing interest in works related to the design of
kinematic controllers in dual quaternion space. Those works
comprise rigid motion stabilization and tracking [5], robust
control [6], multiple rigid body coordination [7], multiple
arm manipulation [8], and human-robot interaction [9].

Nonetheless, results in dual quaternion literature aim
solely at stabilizing the trajectory of the rigid body, without
much concern on control effort and optimality. For instance,
although stable the proportional gain controller [10] shows
an intrinsic delay in the presence of time-varying trajectories.
Adding a feedforward term may eliminate the delay, but has
the disadvantage of requiring a control effort that inevitably
grows alongside the trajectory time derivative. In this context,
optimal criteria allow the designer to choose a performance
in an intermediate ground, with no phase shift and with
optimal control effort.

Among optimal and robust control of robot manipulators,
earlier works consider mostly the dynamic model of the
robot, using the computed torque control scheme. For in-
stance, [11] uses minimum variance control to find optimal
controllers considering input constraints, with results applied
to a two degree-of-freedom (DOF) planar manipulator. A
related work uses fuzzy neural networks to approximately
compute the optimal control [12]. Another approach uses
a single network adaptive critic controller, resulting in a
near optimal solution, which is tested using two DOF of
a simulated WAM robotic manipulator [13]. The aforemen-
tioned fuzzy controllers are able to show approximate results
even without much knowledge of the manipulator dynamics.
They are motivated mostly because the dynamic parameters



are hard to obtain precisely, and vary with different pay-
loads. Despite that advantage, the fuzzy controllers have
a degree of arbitrariness in parameter selection. Moreover,
works using the computed torque technique optimize in
the manipulator joint space, requiring an external tool to
obtain the optimal IK. The implementation complexity also
reduces most examples to two DOF robots. In a different
approach [14], optimal results in the sense of convergence
time are presented. In this context, instead of optimizing
the end-effector trajectory, the authors are interested in
bringing the end-effector to a final location in minimum
time. Finally, a linear-quadratic optimization for manipulator
control has been found [15] considering the dynamic model
of a manipulator. The results mostly concern an efficient and
practical trajectory smoothing algorithm, using the computed
torque technique. However, most recent manipulator robots
can be readily controlled by joint velocity inputs and less so
through joint torque inputs. Moreover, as in other cases, the
optimization is done in joint space, requiring an external IK
planner.

A. Contributions
In this work, we extend the results from dual quater-

nion based controllers with the introduction of an optimal
quadratic tracking control law in the task space of the
general serial-link manipulator. It compensates for modeled
perturbations of the pose error, while considering the control
effort. The optimization-based controller is by itself a rele-
vant improvement on the literature as it provides the designer
with a more intuitive set of performance indexes and extends
the range of applications of the dual quaternion formalism
to robotics.

Moreover, in contrast to standard optimal control tech-
niques for manipulators, the proposed criterion yields opti-
mized task-space variables that greatly simplify the control
implementation. As a consequence, instead of optimizing the
joint-space velocity, we aim at obtaining an optimal result
for the end-effector velocity at task-space. The analysis is
particularly relevant in advanced manipulation tasks—for
instance, manipulation in hazardous or unstructured environ-
ments, and multi-arm manipulation—that require precise and
safe interaction in contrast to convergence speed. In the view
of human-robot interaction, the speed of the end-effector
largely influences the human acceptance of the contact [16].
Indeed, even if the robotic system is able to prevent undesired
injuries, a human is likely to be in a state of constant stress
and discomfort [17]. A controlled speed at task-space also
prevents drifts and overshoots caused by large accelerations
requirements at the low level controllers.

To derive the optimal control criterion, we show that the
dual quaternion kinematic control can be reduced to an affine
time-varying system with respect to the dual quaternion
transformation invariant error. This allows us to obtain a
recursive expression for the optimal control using a linear-
quadratic regulator (LQR). By modeling a continuous trajec-
tory as the perturbation of the error, the proposed dual quater-
nion LQR can be used as a trajectory tracking controller,

while also considering other modeled error disturbances. To
demonstrate the implementation simplicity and efficiency, the
controller is evaluated using a simulated robotic manipulator
with six DOF in a trajectory tracking task.

II. PRELIMINARIES

We begin by recalling dual quaternions and their basic
algebra when representing rigid transformations to establish
the notation used in this work, followed by a brief review of
existing work in the kinematic control of robotic manipula-
tors.

A. Dual Quaternions

Dual quaternions are the building blocks of the kinematic
control theory implemented in this work. We begin with the
definition of the three imaginary components ı̂, |̂ and k̂ of
a quaternion such that ı̂2 = |̂

2 = k̂
2 = ı̂|̂k̂ = �1. Hence, a

general quaternion h is given by h = h1+h2 ı̂+h3|̂+h4k̂,

and its conjugate is defined as h⇤ , h1 � h2 ı̂� h3|̂� h4k̂.
The norm of a quaternion h is k h k=

p
hh⇤.

An arbitrary rotation of a rigid body by an angle ✓ around
an axis n = nx ı̂ + ny |̂ + nz k̂ is represented by the unit
norm quaternion r = cos (✓/2) + n sin (✓/2). A translation
described by t = tx ı̂+ty |̂+tz k̂ can be associated to a rotation
r in order to represent the complete rigid motion. This is
represented by the unit dual quaternion h = r + " (1/2) tr,
where " is nilpotent; i.e., " 6= 0 but "2 = 0. Moreover, the
conjugate of h is defined as h⇤ , r⇤ + "( 12tr)

⇤.
Since a general dual quaternion g is composed of eight

elements, that is, g = g1 + g2 ı̂ + g3|̂ + g4k̂ + "(g5 +

g6 ı̂ + g7|̂ + g8k̂), the vec operator is used to map it
into an eight-dimensional column vector; i.e., vec g ,⇥
g1 g2 g3 g4 g5 g6 g7 g8

⇤T
. We also define the

matrix C8 , diag (1,�1,�1,�1, 1,�1,�1,�1) such that
vec h⇤ = C8vec h. Finally, given dual quaternions g

1
,

g
2
, the Hamilton operators

�
H (·),

+
H (·) are transformation

matrices satisfying the following relation [18]:

vec
⇣
g
1
g
2

⌘
=

+
H

⇣
g
1

⌘
vec g

2
=

�
H

⇣
g
2

⌘
vec g

1
. (1)

B. Kinematic Control

The forward kinematics model (FKM) of a serial manipu-
lator robot (that is, the mapping between the n-dimensional
vector of joint positions ✓ 2 Rn and the end-effector pose
h) can be obtained directly in dual quaternion space using
algebraic manipulations [18]. In addition, the differential
FKM (i.e., the mapping between the joint velocities ✓̇ 2 Rn

and the generalized end-effector velocity vec ḣ 2 R8) is
given by

vec ḣ = J✓̇, (2)

where J 2 R8⇥n is the manipulator Jacobian (which is
also found algebraically [18]) and depends on the current
robot posture. As (2) is a simple linear mapping, it is
common practice to design closed-loop controllers based on
the pseudo-inversion of J that exponentially reduce the error



between the current pose h and a constant desired pose hd;
that is,

✓̇ = KJ
† vec(hd � h), (3)

where K is a positive definite matrix and J
† is the singular

value decomposition (SVD) pseudoinverse of J [10].

III. DUAL QUATERNION KINEMATIC LQR
In this section we describe the novel optimal controller

which is the main contribution of this work. We begin with
the transformation invariant error definition together with
the kinematic equations reviewed in the last section. We
show that the kinematic control with a time-varying reference
from the point of view of the error reduces to a linear
time-varying system with an additive perturbation term. By
using a suitable solution, we find the optimal state-feedback
controller and its computation is discussed.

First, consider an arbitrary continuous desired trajectory
hd , hd(t) in dual quaternion space and the current end-
effector pose h. The invariant error is given by [6]

e = 1� h⇤hd. (4)

Since the LQR optimization computation assumes future
knowledge of the explicit variables, we need to remove any
direct dependency on h. Hence,

e = 1� h⇤hd =) eh⇤
d = h⇤

d � h⇤ =) h⇤ = h⇤
d � eh⇤

d.

With time-varying h and hd, the derivative of (4) is given
by ė = �ḣ

⇤
hd � h⇤ḣd. Therefore

ė = �ḣ
⇤
hd � (h⇤

d � eh⇤
d)ḣd = �ḣ

⇤
hd + eh⇤

dḣd � h⇤
dḣd.

Using the vec operator on both sides and defining e , vec e
yields

ė = �
�
H (hd)C8vec ḣ+

�
H

⇣
h⇤
dḣd

⌘
e� vec h⇤

dḣd.

By defining A ,
�
H

⇣
h⇤
dḣd

⌘
and c , �vec h⇤

dḣd, and using
(2), we find

ė = �
�
H (hd)C8J✓̇ +Ae+ c.

Finally, with N ,
�
H (hd)C8J,

ė = Ae�N✓̇ + c.

Instead of considering ✓̇ the input signal for the system,
we can consider as input the end effector velocity u using
the mapping u = �N✓̇. This allows the optimization to be
done in task-space variables. We focus on finding the optimal
controller for the affine time-varying system

ė(t) = A(t)e(t) + u(t) + c(t). (5)

Therefore, from the error point-of-view, we can solve the
tracking problem for a continuous trajectory using a finite
horizon LQR applied to a disturbed system, as the error
disturbance caused by the time-varying trajectory is given
by c(t). Other modeled continuous disturbances can also be
grouped into c(t) and used in the same solution.

Consider that the manipulator has to track the trajectory
during t 2 [0, tf ]. Therefore, we seek to minimize the
following cost function

F =
1

2
e(tf )

T
Se(tf ) +

1

2

Z tf

t0

�
e
T
Qe+ u

T
Ru

�
dt, (6)

given the matrices S, Q(t) � 0 and R(t) > 0 with S, Q, R

2 R8⇥8. The matrix S is the weight of the final error
norm, the time-varying matrix Q weighs the error cost along
the trajectory, and the time-varying matrix R weighs the
control effort in terms of end-effector velocity norm. As
long as N is well conditioned, an increase in R will, ceteris
paribus, also cause an overall decrease in joint velocities.
The optimization of (6) leads to an optimal feedback without
excessive expenditure of control energy while keeping the
error e(t) near zero [19].

To solve the optimization problem, we introduce the
costate variable p, which acts as a Lagrange multiplier for the
state equations. Hence, using the equality constraint defined
in (5), the function (6) can be rewritten as

H = F +

Z tf

t0

p
T (Ae+ u+ c� ė)dt. (7)

According to [20] and to distribution theory applied to
optimality conditions, we have @H/@u = 0 and @H/@e = 0
as necessary conditions for the optimal trajectory. Hence,

@H

@u
= 0 =) Ru+ p = 0

=) u = �R
�1

p. (8)

In addition, we use the Leibniz integral rule in (7), that is,

�
Z tf

t0

p
T
ėdt = �

Z tf

t0

✓
d

dt

�
p
T
e
�
� ṗ

T
e

◆
dt

= p
T (t0)e(t0)� p

T (tf )e(tf ) +

Z tf

t0

ṗ
T
edt,

to find
@H

@e
= 0 =) Qe+A

T
p+ ṗ = 0

=) ṗ = �
�
Qe+A

T
p
�
. (9)

Please note that @2
H/@u

2 must be positive to minimize
(7), which requires R > 0. The system and proposed cost
function allow the use of the costate function [20]

p(t) = Pe+ ⇠, (10)

where P is a time-varying proportional gain and ⇠ is a
weighted feedforward term. The derivative of (10) is given
by

ṗ(t) = Ṗe+Pė+ ⇠̇. (11)

After using (10) in (8) and substituting the result in (5), and
using (10) in (9), we replace the resulting equations in (11)
to find

� ⇠̇ �A
T
⇠ +PR

�1
⇠ �Pc

=
⇣
Ṗ+PA+A

T
P�PR

�1
P+Q

⌘
e. (12)



Considering that (12) must hold for any choice of initial state
e and that both P and ⇠ do not depend on the initial error,
we need simultaneously

(
Ṗ+PA+A

T
P�PR

�1
P+Q = 0

⇠̇ +A
T
⇠ �PR

�1
⇠ +Pc = 0,

which means
(
Ṗ = �PA�A

T
P+PR

�1
P�Q

⇠̇ = �A
T
⇠ +PR

�1
⇠ �Pc.

(13)

The boundary conditions to solve (13) are obtained using
the final time, tf , of our trajectory. We set the feed-forward
term to zero in the terminal time—that is, ⇠(tf ) = 0—to
find the first boundary condition. From (10) with ⇠(tf ) = 0,
we find that @H/@e(tf ) = 0 yields P(tf ) = S.

Note that we know A(t) =
�
H

⇣
h⇤
dḣd

⌘
for all t, as it

depends only on the desired trajectory. We can then numer-
ically solve the differential Ricatti equation P(t) backwards
in time. As c = �h⇤

dḣd is also known for all t and, with
the solution of P(t), we can find ⇠(t) by also solving it
backwards in time.

Therefore, from (8) and (10) the optimal control is given
by u(t) = �R

�1 (Pe+ ⇠) . Applying as joint velocities, we
find

✓̇ = N
†
R

�1 (Pe+ ⇠) . (14)

A. DQ-LQR Computation and Parameter Selection

The system (13) containing the Ricatti equation is nonlin-
ear, and the closed-form solution may not be found for all
cases. As a consequence, finite differences approximations
are normally used; that is,

d

dt
P(t) ⇡ P(t+ ⌧)�P(t)

⌧

for a small sampling time ⌧ that directly affects the approx-
imation precision.

In order to obtain P(t) for all t, we begin with P(tf ) and
use the derivative approximation backwards in time using the
known values of A(t), which depends only on the desired
trajectory, up to P(0). The same can be applied to find an
approximate solution for ⇠(t), by also considering c(t). All
these calculations can be done before the system starts to
operate.

The design parameters of the controller are the matrices
Q, S and R. Matrices Q and S are related to the state norm
cost. Since the system input is the end-effector velocities, a
proper choice of the elements of R allows the designer to
define end effector velocities into which is more costly to
move over others.

An interesting characteristic of the LQR design is the
ability to define time-varying weights in the optimization
process. For instance, we may devise a trajectory that begins
far from the end effector initial position. To avoid large joint
velocities when the error is expected to be large, we may
assign a smaller Q at the beginning of the trajectory.

IV. SIMULATED EVALUATION & DISCUSSION

In order to demonstrate the controller behavior under
different sets of parameters, a simulated task was devised.
The controller was implemented using the DQ_robotics1

in MATLAB. Consider the COMAU Smart Six with six
DOF, with which we wish to perform a complex motion to
demonstrate the effectiveness and simplicity of the controller.

We begin by choosing a periodic translation in all axes,

td(t) = (0.99707+0.1 cos(⇡t)) ı̂+ (0.1+0.1 cos(⇡t)) |̂

+ (1.075+0.1 sin(⇡t)) k̂.

In order to generate a motion that modifies all rotational
degrees of freedom, we also choose a varying end effector
orientation given by

rd(t) = cos

✓
�

2

◆
+ sin

✓
�

2

◆
v

k v k ,

with � = 0.25 sin(⇡t) + ⇡ and v = cos(⇡t)̂ı + sin(⇡t)|̂ +
(sin(⇡t)� 2)k̂.

The trajectory is the combined motion given by

hd(t) =rd(t) + "
1
2td(t)rd(t).

The robot initial configuration is given by ✓0 =⇥
0 0 �⇡/2 0 ⇡/2 0

⇤T , with the end effector placed
40 cm away from the desired trajectory.

Three LQR controllers are designed so that their perfor-
mance can be evaluated. In order to simplify the choice of
parameters, we define s, q, r 2 R, such that

S = sI, Q = qI, R = rI,

where I 2 R8⇥8 is an identity matrix. The choice of
parameters is closely intertwined with the task specificities.
For instance, we suppose that the end-time error is not of
higher importance than the error in the remainder of the
trajectory by setting s = 0. By knowing that the end effector
starts far from the desired trajectory, we design a trajectory
error weight q that begins small and increases over time:
q = 0.001 for t  0.5, linearly increasing to q = 1 for
t 2 (0.5, 1.0], q = 1 otherwise. All three controllers share
the same s and q.

In order to compare performance, we distinguish the three
controllers by choosing a decreasing weight for the control
effort parameter, that is r 2 {0.1, 0.01, 0.001}. The overall
behavior of the three optimal controllers can be seen in
Fig. 1. In all controllers, the choice of q allows a well-
behaved initial motion. Moreover, there is no noticeable
phase shift after 1.0 s, when q reaches its final value. The
effect in the decreasing of r is also clearly shown in Fig. 1,
that is, a higher control effort yields smaller trajectory error.

We also compare the performance of the proposed optimal
controllers with classic control methods. To this aim, we also
simulated a proportional controller (K controller)

(
K = kI, k 2 R+

✓̇ = N
†
Ke,

1http://dqrobotics.sourceforge.net



and a proportional controller with a feed-forward term (K +
FF), given by

(
K = kI, k 2 R+

✓̇ = N
†(Ke� vec h⇤ḣd).

The performance of the optimal controller with r = 0.001,
in comparison with the K and K+FF controllers with k = 10
is shown in Fig. 2. It is noticeable that whereas the K
controller shows the expected phase shift in spite of the
high control effort, the propose criterion with r = 0.001
closely resembles the K + FF controller, but without the
initial peak velocity. This allows the LQR controller to
send smoother joint velocities when compared to the abrupt
velocities seen in the K and K + FF controllers. It also yields
smaller accelerations at the end-effector which, among other
benefits, prevents damages to the manipulator and reduces
the discomfort during human-robot interaction [17].

The overall results show that by choosing the design
parameters accordingly, we are able to define a trade-off
between control effort and tracking error along the trajectory.
For further information, the integral norm of the end-effector
velocity, acceleration, and tracking error for each controller
is shown in Table I. From Fig. 2, it is clear that the
smaller error from the K+FF controller stems from smaller
convergence time which in turn is obtained in exchange of
abrupt velocities and accelerations—respectively, 25% and
250% larger than the results from the LQR with r = 0.001.

TABLE I
INTEGRAL NORM OF THE END-EFFECTOR VELOCITY (VEL.),

ACCELERATION (ACC.), AND TRAJECTORY ERROR (ERR.).

LQR K K+FF
r=0.1 r=0.05 r=0.001 k=10 k=10

Err. 1.134 0.886 0.450 0.582 0.176
Vel. 3.297 3.833 4.857 5.820 5.954
Acc. 0.028 0.033 0.048 0.176 0.173

V. CONCLUSIONS

In this paper, we studied the design of a dual quaternion
kinematic finite-time linear-quadratic optimal tracking con-
troller. By deriving a perturbed time-varying linear system
from the transformation invariant error definition, we pro-
posed an optimal criterion strategy to control the error in
relation to perturbations caused by a time-varying trajectory.
The resulting optimal technique can be readily applied to
account for other modeled sources of bias and disturbance to
the end effector pose error. The controller allows the designer
to set optimal gains for a given trajectory in terms of control
effort and error regulation, and may be applied in both non-
redundant and redundant manipulators. We also provided
simulation results using a six DOF manipulator to illustrate
the performance and effectiveness of the proposed optimal
criterion in comparison with a proportional gain controller
and a proportional gain controller with feed-forward.
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Fig. 1. End effector translation (left) and orientation (center), the control effort (top-right), and end effector trajectory (bottom-right); using the linear-
quadratic optimal controller with different parameters. The trade-off between error and control effort is noticeable, and the end effector motion shows no
steady-state phase shift in relation to the reference.
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Fig. 2. End effector translation (left) and orientation (center), the control effort (top-right), and end effector trajectory (bottom-right); comparing the
optimal controller with the proportional gain controllers. The initial peak velocity using the proportional controllers is noticeable, and results from the high
initial error. Without the prediction term, the proportional controller has an inherent phase shift in relation to the desired trajectory.
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